No books or calculators are permitted, however you may use one 8.5 × 11 sheet of notes.

(1) (15 points) Let $x(t)$, $v(t)$, and $a(t)$ be the position, velocity, and acceleration of a body at time t. Suppose $a(t) = t$, $v(0) = 1$, and $x(0) = 0$.

(a) Find $v(t)$.
(b) Find $x(t)$.
(c) Find the total distance travelled during the time $0 \leq t \leq 1$.

(2) (25 points) Evaluate the following indefinite integrals. Briefly justify your steps.

(a) $\int (x^2 - 3x)(2x - 3)\,dx$
(b) $\int \sin^3 x \cos x \,dx$
(c) $\int \frac{x^3}{e^{x^2}} \,dx$
(d) $\int x(3x - 5)^{11} \,dx$
(e) $\int \tan 2x \,dx$

(3) (15 points) Evaluate the following definite integrals. Briefly justify your steps.

(a) $\int_0^{\pi/2} \cos x \,dx$
(b) $\int_0^1 \frac{x}{3-x^2} \,dx$
(c) $\int_0^1 e^{-2x} \,dx$

(4) (10 points) Consider the two functions

$$F(x) = \int_0^x \frac{\sin t}{1 + t^2} \,dt \quad \text{and} \quad G(x) = \int_0^x \frac{\sin t}{1 + t^2} \,dt$$
on the interval $0 \leq x \leq 2\pi$.

(a) Find $F'(x)$, and identify the critical numbers of F (i.e. solutions of $F'(x) = 0$ satisfying $0 \leq x \leq 2\pi$).
(b) Find $G'(x)$, and identify the critical numbers of G.

1
(5) (20 points) Let \(f(x) = 6 - x^2 \).
(a) Sketch the region bounded by \(f(x) \) and the \(x \)-axis.
(b) Find the area of this region.
(c) Find the volume of the body obtained by revolving the region about the \(x \)-axis.
(d) Find the volume of the body obtained by revolving the region about the \(y \)-axis.

(6) (15 points) Consider the region between the graphs of \(y = x + 1 \) and \(y = 1 - x^2 \), for \(0 < x < 1 \).
(a) Sketch this region.
(b) Find its area, using integration in \(x \).
(c) Explain how you could alternatively have found its area using integration in \(y \) (to save time, you need not evaluate the integrals).

(7) (15 points) Let’s consider inverse functions.
(a) We learned that if \(f \) is a differentiable function which is one-to-one, then its inverse \(f^{-1} \) is differentiable and
\[
(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}
\]
provided that \(f'(f^{-1}(y)) \neq 0 \). Explain why this formula is valid, starting from the identity \(f(f^{-1}(y)) = y \) and assuming that \(f^{-1} \) is differentiable.
(b) Now consider \(f(x) = x^3 + 2x - 5 \). Notice that \(f(1) = -2 \).
 (i) Show that \(f \) is one-to-one.
 (ii) Calculate \((f^{-1})'(-2) \).

(8) (10 points) If a function \(f \) satisfies \(f > 0 \) and \(f' > 0 \), then
\[
\frac{1}{4}[f(0) + f(1/4) + f(1/2) + f(3/4)] \leq \int_0^1 f(x) \, dx \leq \frac{1}{4}[f(1/4) + f(1/2) + f(3/4) + f(1)].
\]
Explain why this is true, using the relationship between lower sums, upper sums, and integrals.