Calculus I Midterm taken 9/28/05 - Solutions

1. (a) \(\lim_{x \to 2^-} f(x) = -\infty \)
 (b) \(\lim_{x \to 2^+} f(x) = -\infty \)
 (c) \(\lim_{x \to 2} f(x) = -\infty \)

2. (a) \(\lim_{x \to 4^-} f(x) = 3 \)
 (b) \(\lim_{x \to 4^+} f(x) = 2 \)
 (d) \(\lim_{x \to 4} f(x) \) does not exist

3. (a) \(f(2) \) is undefined; therefore \(f \) is not continuous at \(x = 2 \)
 (b) \(f(4) = 3 \); \(f \) is discontinuous at \(x = 4 \) (it has a jump discontinuity)

4. (a) \(f(9) = 3 \)
 (b) left limit is \(-1\), right limit is \(+1\),
 so the limit as \(x \to 0 \) does not exist

5. \((x^2 + 2x - 24) = (x+6)(x-4) \)
 no limit as \(\lim_{x \to 4} (x+6) = 10 \)

6. \(\frac{1 - \frac{1}{h^2}}{1 - \frac{1}{h^3}} = \frac{h^3 - h}{h^3 - 1} \)
 so limit as \(h \to 0 \) is \(\frac{0}{-1} = 0 \)

7. \(\frac{(x+h)^2 - x^2}{h} = 2xh + h^2 = 2x + h \)
 so limit as \(h \to 0 \) is \(2x \)

8. \(\frac{1}{x+h} - \frac{1}{x} = \frac{x - (x+h)}{x(x+h)} = -\frac{1}{x(x+h)} \)
 so limit as \(h \to 0 \) is \(-\frac{1}{x^2} \)

9. (a) \(f' = 6x \)
 (b) \(f' = (x^2 + 5)(1) + 2x(x-7) \)
 (c) \(f' = \frac{(3x^2 + 10x)(x^2 + 8) - (x^3 + 5x^2 - 8)(2x)}{(x^2 + 8)^2} \)
(10) a) \[\frac{dy}{dx} = 3(x^2 + 2x)^2 \cdot (2x + 2) \]

b) \[\frac{dy}{dx} = \frac{1}{2}(x^2 - 1) \cdot 2x \]

(11) a) \[f' = \frac{3}{2} x^{1/2} - x^{-1/2} \]

b) \[f' = \frac{x^{-1/2}}{(x^2 - 1) \cdot (2x + 2) - 2x \cdot (x^{2/2} - 2x^{1/2})}{(x^2 + 2)^2} \]

(12) a) \[f' = 10x^6 \Rightarrow f'' = 90x^5 \]

b) \[f' = \frac{1}{z} (2x + 1)^{-1/2} \Rightarrow f'' = \frac{-1}{2} (2x + 1)^{-3/2} \]

(13) a) \[\frac{d}{dx} \left(x^2 + \frac{2}{x} \right) = 3x^2 - 2x^{-2} \]

b) \[\frac{d}{dx} \left[\frac{3x^2 - 2x^{-2}}{x^2} \right] = \frac{d}{dx} \left[3 - 2x^{-4} \right] = 8x^{-5} \]

(14) a) \[f'(x) = -\frac{1}{x^2} \]

b) \[x_0 = 1, f(x_0) = 1, \text{ slope is } f'(x_0) = -1 \Rightarrow \text{ line is } y = \frac{x - 1}{x - 1} = -1 \]

c) \[\text{normal line has slope } -\frac{1}{f'(x)} = x^2. \text{ We want this to equal } 2. \text{ Solution is } x^2 = 2 \Rightarrow x = \pm \sqrt{2} \]

(15) a) \[f' = 3x^2 - 3 \]

b) \[f'(x) = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \]

c) \[f'(x) > 0 \Rightarrow x^2 > 1 \Rightarrow x > 1 \text{ or } x < -1 \]

(16) a) \[f'' = 0 \Rightarrow \frac{-32t + 16}{0} \Rightarrow t = \frac{1}{2} \text{ sec} \]

b) \[t = 0 \Rightarrow -16t^2 + 16t = 0 \Rightarrow t = 0 \text{ (initial time)} \text{ or } t = 1 \text{ sec} \]

(17) a) \[\text{at } x=1, \quad x^2 = 1 \text{ and } 4x - 3 = 1. \text{ They catch } \Rightarrow f \text{ is cont's} \]

b) \[\text{at } x=1, \quad \text{slopes from right & left are } \frac{dy}{dx} \left[4x - 3 \right] = 4 \text{ and } \frac{dy}{dx} \left[x^2 \right] = 2x = 2. \text{ They don't catch } \Rightarrow \text{ f is not differentiable} \]