SECTION 11.4

1. diverges; \(a_k \neq 0 \)

2. (a) \(\sum |a_k| = \sum \frac{1}{2k} \) diverges, so not absolutely convergent.
 (b) \(\frac{1}{2(k+1)^2} < \frac{1}{2k^2} \); \(a_k \to 0 \); converges conditionally; Theorem 11.4.3.

3. diverges; \(\frac{1}{k + 1} \to 1 \neq 0 \)

4. (a) \(\sum |a_k| = \sum \frac{1}{k!} \); does not converge absolutely.
 (b) converges conditionally; Theorem 11.4.3.

5. (a) does not converge absolutely; integral test,
 \(\int_1^\infty \frac{\ln(x)}{x^2} \, dx = \lim_{k \to \infty} \left[\frac{\ln(x)}{x^2} \right]_1^k = \infty \)
 (b) converges conditionally; Theorem 11.4.3.

6. diverges; \(a_k \neq 0 \)

7. diverges; limit comparison with \(\sum \frac{1}{k} \); another approach:
 \(\sum \frac{1}{k} - \frac{1}{k^2} \) diverges since \(\sum \frac{1}{k} \) diverges and
 \(\sum \frac{1}{k^2} \) converges.

8. converges absolutely (terms already positive); ratio test,
 \(\frac{a_{k+1}}{a_k} = \frac{(k+1)^{k+1}}{k^k} = \left(\frac{k+1}{k} \right)^{k+1} \left(\frac{k+1}{k} \right)^{1/2} = \frac{1}{2} \left(\frac{k+1}{k} \right)^{1/2} \)

9. (a) does not converge absolutely; limit comparison with \(\sum \frac{1}{k} \);
 (b) converges conditionally; Theorem 11.4.3.

10. converges absolutely by ratio test.

11. diverges; \(a_k \neq 0 \)

12. diverges; \(a_k \neq 0 \)

13. (a) does not converge absolutely;
 \((\sqrt{k+1} - \sqrt{k}) \left(\frac{\sqrt{k+1} + 1}{\sqrt{k+1} + \sqrt{k}} \right) = \frac{1}{\sqrt{k+1} + \sqrt{k}} \)
 and
 \(\sum \frac{1}{\sqrt{k+1} + \sqrt{k}} > \sum \frac{1}{2\sqrt{k+1}} = \frac{1}{2} \sum \frac{1}{\sqrt{k+1}} \) (a p-series with \(p < 1 \))
 (b) converges conditionally; Theorem 11.4.3.
14. (a) does not converge absolutely: \(\frac{k}{k^2 + 1} \geq \frac{k}{2k^2} = \frac{1}{2k} \) \hspace{1cm} \text{comparison with} \hspace{1cm} \sum \frac{1}{2k}

(b) \(\frac{k+1}{(k+1)^2 + 1} < \frac{k}{k^2 + 1} \) \hspace{1cm} \text{converges conditionally; Theorem 11.4.3.}

15. converges absolutely (terms already positive); basic comparison,

\[\sum \sin \left(\frac{x}{4k^2} \right) \leq \sum \frac{x}{4k^2} = \frac{x}{4} \sum \frac{1}{k^2} \quad (|\sin x| \leq |x|) \]

16. (a) does not converge absolutely:

\[\sum \frac{1}{\sqrt{k(k+1)}} > \sum \frac{1}{k+1} \]

(b) converges conditionally by Theorem 11.4.3

17. converges absolutely; ratio test, \(\frac{a_{n+1}}{a_k} = \frac{k+1}{2k} \quad \frac{1}{2} \quad \text{with} \quad \sum \frac{1}{k^{\sqrt{2}}} \)

18. terms all positive, converges absolutely: \(a_k = \frac{1}{\sqrt{k(k+1)}} \), comparison with \(\sum \frac{1}{k^{\sqrt{2}}} \)

19. (a) does not converge absolutely; limit comparison with \(\sum \frac{1}{k} \)

(b) converges conditionally; Theorem 11.4.3

20. (a) does not converge absolutely:

\[\frac{k+2}{k^2 + k} > \frac{k}{2k^2} = \frac{1}{2k} \]

(b) converges conditionally; Theorem 11.4.3

21. diverges; \(a_k = \frac{x^{4-2}}{e^k} = \frac{1}{16} \left(\frac{e}{x} \right)^k \neq 0 \)

22. converges absolutely by integral test:

\[\int_{1}^{\infty} x^{2-1} \, dx \quad \text{converges} \]

23. diverges; \(a_k = k \sin(1/k) = \frac{\sin(1/k)}{1/k} \rightarrow 1 \neq 0 \)

24. converges absolutely; ratio test,\(\frac{|a_{n+1}|}{a_k} = \frac{(k+1)(k+1)!}{k^2} \frac{k!}{(k+1)!} \frac{1}{k} \rightarrow 0 \), so \(a_k \neq 0 \)

25. converges absolutely; ratio test, \(\frac{|a_{n+1}|}{a_k} = \frac{(k+1)^{k+1} \cdot e^{-(k+1)}}{k^k} \rightarrow \frac{k+1}{e} \)

26. (a) \[\sum \frac{(1)^k}{k} \]

(b) converges conditionally; Theorem 11.4.3

27. diverges; \(\sum (1)^k \cos \frac{1}{k} \frac{1}{k} \neq \sum \frac{1}{k} \)

28. Converges absolutely; \(|a_k| = \left| \frac{\sin(\pi k/2)}{\pi k} \right| < \frac{1}{k^{\sqrt{2}}} \)

29. converges absolutely; basic comparison
30 \quad \textbf{SECTION 11.4}

\[\sum_{k=1}^{\infty} \frac{\sin(\pi k/4)}{k^2} \leq \sum_{k=1}^{\infty} \frac{1}{k^2} \]

30. The series \(\sum \left(\frac{1}{3k+2} - \frac{1}{3k+3} \right) \) converges by comparison with \(\sum \frac{1}{k^2} \).

If \(\sum \left(\frac{1}{3k+2} - \frac{1}{3k+3} \right) \) converges, then

\[\frac{1}{3k+1} \sum \left(\frac{1}{3k+2} - \frac{1}{3k+3} \right) - \sum \left(\frac{1}{3k+2} - \frac{1}{3k+3} \right) \]

would converge, which is not the case.

31. diverges: \(a_k \neq 0 \)

32. error \(< a_{21} = \frac{1}{21} \)

33. Use (11.4.1): \(| s - s_n | < a_n \).

34. error \(< a_5 = \frac{1}{10^5} = 0.00001 \)

35. Use (11.4.1): \(| s - s_n | < a_n \).

36. error \(< a_{n-1} \).

37. \(\frac{10}{11} \) geometric series with \(a = 1 \) and \(r = \frac{1}{10} \):

\[\sum_{n=1}^{\infty} a_n = 1 - \frac{1}{10} \]

38. \((0.9)^{N+1} \cdot \frac{1}{N+1} < 0.001 \)

39. Use (11.4.1): \(| s - s_n | < a_n \).

40. (a) \(\sum_{k=1}^{\infty} \frac{(-1)^k}{(k+1)!} \approx 0.841 \) \(\approx 0.841471 \)

(b) \(\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{k} \approx 0.693 \) \(\approx 0.693147 \)

(c) \(\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \approx 0.657 \) \(\approx 0.657959 \)

41. \(n = 999; \) \(L = \sum_{k=1}^{999} \frac{k^2}{k^2 + 1} \)

42. The series diverges because among the partial sums are all sums of the form

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} \]

Then, for instance,

\[s_1 = \frac{1}{2}, \quad s_2 = \frac{1}{2} + \frac{1}{3} = s_1 + \frac{1}{3}, \quad s_3 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = s_2 + \frac{1}{4}, \quad \text{and so on.} \]

This does not violate the theorem on alternating series because, in the notation of the theorem, it is not true that \(\{a_n\} \) decreases.