1. Let
\[f(x) = e^{\frac{x^3-2}{x+1}} \]
Find \(f'(x) \) by using any combination of the product rule, quotient rule or chain rule you like.

2. Let
\[g(x) = \sqrt{2x^3 - 3x^2 - 12x + 5} \]
Find all points \(x_0 \) such that \(g'(x_0) = 0 \).

Solutions:

1. The primary rule to be applied here is the chain rule. Let \(a(x) = e^x \) and \(b(x) = \frac{x^3-2}{x+1} \). Then
\[a(b(x)) = a\left(\frac{x^3-2}{x+1}\right) = e^{\frac{x^3-2}{x+1}}, \]
so all we’ve done is rewritten \(f(x) \) as \(f(x) = a(b(x)) \). Then the formula for the chain rule tells us \(f'(x) = a'(b(x))b'(x) \). We know \(a'(x) = e^x \), and then by the quotient rule we have
\[b'(x) = \frac{3x^2(x+1) - (x^3-2)(1)}{(x+1)^2} \]
\[= \frac{2x^3 + 3x^2 + 2}{(x+1)^2} \]
Therefore
\[f'(x) = a'(b(x))b'(x) \]
\[= a'\left(\frac{x^3-2}{x+1}\right) \frac{2x^3 + 3x^2 + 2}{(x+1)^2} \]
\[= e^{\frac{x^3-2}{x+1}} \left(\frac{2x^3 + 3x^2 + 2}{(x+1)^2}\right) \]
2. To solve \(g'(x) = 0 \) we first need to know \(g'(x) \). Again we apply the chain rule. Let
\[a(x) = \sqrt{x} = x^{1/2}, \]
and
\[b(x) = 2x^3 - 3x^2 - 12x + 5. \]
Then \(g(x) = a(b(x)) \), so by the chain rule we know
\[g'(x) = a'(b(x))b'(x). \]
We have
\[
a'(x) = \frac{d}{dx} x^{1/2} = \frac{1}{2} x^{-1/2}
\]
and
\[
b'(x) = \frac{d}{dx} (2x^3 - 3x^2 - 12x + 5) = 6x^2 - 6x - 12 = 6(x^2 - x - 2)
\]
Therefore
\[
g'(x) = a'(b(x))b'(x)
\]
\[
= a'(2x^3 - 3x^2 - 12x + 5)b'(x)
\]
\[
= \frac{1}{2} (2x^3 - 3x^2 - 12x + 5)^{-1/2} \cdot 6(x^2 - x - 2)
\]
\[
= \frac{3(x^2 - x - 2)}{(2x^3 - 3x^2 - 12x + 5)^{1/2}}
\]
Since \(g'(x) \) is a fraction it can only be zero if the numerator is zero, i.e. \(g'(x) = 0 \) only if \(x^2 - x - 2 = 0 \). By factoring we get
\[
x^2 - x - 2 = (x - 2)(x + 1) = 0
\]
which means \(x = 2 \) or \(x = -1 \). Thus the points \(x_0 \) such that \(g'(x_0) = 0 \) are \(x_0 = 2 \) and \(x_0 = -1 \). These points are called the critical points of \(g \). They are of special interest because they are points at which \(g \) possibly (but not necessarily) achieves its maximum/minimum values.