1. (a) Under what condition will Newton’s method converge slowly even if we start from with a quite accurate initial approximation \(x_0 \) of a root of \(f(x) = 0 \)?

The convergence is slow if \(f' \) vanishes at the root. See problem 1.6 in the textbook.

(b) Are there situations for which the bisection algorithm to find a root of \(f(x) = 0 \) will not work?

We cannot get this method to work if there is no change of sign, e.g., if we have a double root.

2. (a) In about ten words: What is Gaussian elimination? In particular, for what problems is it used?

Gaussian elimination is a method for solving linear systems of algebraic equations of the form \(Ax = b \), where \(A \) is a square matrix. The linear system is turned into upper triangular form by a series of row operations.

(b) How much work would that require if the matrix is \(n \times n \)?

The work – the number of arithmetic operations – grows cubically in \(n \).

(c) Gaussian elimination can produce quite inaccurate results. Explain what properties of the matrix can cause this to happen.

We can get inaccurate results if the matrix is ill-conditioned, i.e., \(\|A\|\|A^{-1}\| \) is large. See the end of section 2.7 in the textbook.