1. Consider an analytic function \(f(z) \) in a domain in the complex plane, which has a constant modulus \(|f(z)| \). Show that \(f(z) \) must then be a constant function.

2. Express \(\cos 3\phi, \cos 4\phi, \) and \(\cos 5\phi \) in terms of \(\cos \phi \) and \(\sin \phi \).

3. Consider the root of \(z^n = 1 \) given by \(\omega = \cos \frac{2\pi}{n} + i\sin \frac{2\pi}{n} \). For which integers \(m \) is
 \[
 1 + \omega^m + \omega^{2m} + \cdots + \omega^{(n-1)m} = 0?
 \]

4. Consider a convergent sequence \(\{z_n\} \) of complex numbers such that \(|z_n - z| \to 0 \). Show that the sequence \(\{Z_n\} \) of the corresponding points on the unit sphere of the stereographic projection also converges.
 Is it also true that the convergence of \(\{Z_n\} \to Z \) implies the convergence of the corresponding sequence in the complex plane?
 If possible consider all cases including \(z = \infty, Z = (0, 0, 1) \).

5. Show that, except for at \(z = 0 \), \(\log |z| \) is a harmonic function and use calculus to find its conjugate harmonic function.